If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-8x-216=0
a = 18; b = -8; c = -216;
Δ = b2-4ac
Δ = -82-4·18·(-216)
Δ = 15616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15616}=\sqrt{256*61}=\sqrt{256}*\sqrt{61}=16\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16\sqrt{61}}{2*18}=\frac{8-16\sqrt{61}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16\sqrt{61}}{2*18}=\frac{8+16\sqrt{61}}{36} $
| 100–m=84;m=184 | | 5x+4x=-3=15 | | 3(4x-2)=9x+6+3x | | -3x+9-5=-47 | | 63°+x+13=3x | | 5u−8=17 | | 4x+10+2x+2=42 | | 4(3x+6)=-16– | | -2+2x=50 | | g-37=6 | | 17y-4=0 | | 9x5x=630 | | 13x-9x+20=10x+10-8 | | 25°+2x+3=3x-17 | | -243=-9(20+w) | | 10x+9=-21 | | 156=-13t^2+104t | | (2x+15)+(x+37)=180 | | 22+-3x=50 | | –2x=155–(-45) | | m+.4=2 | | (3g−5)(–7)= | | .25x=1.75 | | 3/4x-10=x/4 | | -1/2n-9/4=-1/4 | | 4(b+5)=21 | | 13x-11=14*10 | | 7r−–10r+–9r=–8 | | (X+1)^2(x+2)=72 | | y/5+12=18 | | 4a+10=36 | | x-1.83=5.8 |